jueves, 30 de abril de 2015

Equilibrio Transaccional

Un cuerpo se encuentra en equilibrio transaccional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.
Cuando un cuerpo esta en equilibrio transaccional no tiene fuerza resultante actuando sobre el.


EJEMPLO DE PROBLEMA DE APLICACIÓN:
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:

A continuación se elabora su diagrama de cuerpo libre.

Ahora por medio de la descomposición de los vectores, calculamos lafuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*
Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1 cos 45+F2=0
          F2=F1(0.7071)
EFy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N

Equilibrio Rotacional


Equilibrio Rotacional.- Ocurre cuando un cuerpo o sistema no gira con respecto a algún punto, aunque exista una tendencia.
CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.


Estabilidad y Equilibrio
Un cuerpo en equilibrio estático, si no se le perturba, no sufre aceleración de traslación o de rotación, porque la suma de todas las fuerzas u la suma de todos los momentos que actúan sobre él son cero. Sin embargo, si el cuerpo se desplaza ligeramente, son posibles tres resultados: (1) el objeto regresa a su posición original, en cuyo caso se dice que está en equilibrio estable; (2) el objeto se aparta más de su posición, en cuyo caso se dice que está en equilibrio inestable; o bien (3) el objeto permanece en su nueva posición, en cuyo caso se dice que está en equilibrio neutro o indiferente.
Daremos los ejemplos siguientes: Una pelota colgada libremente de un hilo está en equilibrio estable porque si se desplaza hacia un lado, rápidamente regresará a su posición inicial. Por otro lado, un lápiz parado sobre su punta está en equilibrio inestable; si su centro de gravedad está directamente arriba de su punta la fuerza y el momento netos sobre él serán cero, pero si se desplaza aunque sea un poco, digamos por alguna corriente de aireo una vibración, habrá un momento sobre él y continuaré cayendo en dirección del desplazamiento original. Por último, un ejemplo de cuerpo en equilibrio indiferente es una esfera que descansa sobre una mesa horizontal; si se desplaza ligeramente hacia un lado permanecerá en su posición nueva.
En la mayor parte de los casos como en el diseño de estructuras y en trabajos con el cuerpo humano, nos interesa mantener equilibrio estable o balance, como decimos a veces. En general un objeto cuyo centro de gravedad esté debajo de su punto de apoyo, como por ejemplo una pelota sujeta de un hilo, estará en equilibrio estable. 
ntonces la estabilidad puede ser relativa. Un ladrillo que yace sobre su cara más amplia es más estable que si yace sobre su extremo, porque se necesitará más esfuerzo para hacerlo voltear. En el caso extremo del lápiz, la base es prácticamente un punto y la menor perturbación lo hará caer. En general, mientras más grande sea la base y más abajo esté el centro de gravedad, será más estable el objeto.
En este sentido, los seres humanos son mucho menos estables que losmamíferoscuadrúpedos, los cuales no sólo tienen mayor base de soporte por sus cuatro patas, sino que tienen un centro de gravedad más bajo. La especie humana tuvo que desarrollar características especiales, como ciertos músculosmuy poderosos, para podermanejar el problema de mantenerse parados y al mismo tiempo estable. A causa de su posición vertical, los seres humanos sufren de numerosos achaques, como el dolor de la parte baja de la espalda debido a las grandes fuerzas que intervienen. Cuando camina y efectúa otros tipos de movimientos, una persona desplaza continuamente su cuerpo, de modo que su centro de gravedad esté sobre los pies, aunque en el adulto normal ello no requiera de concentración de pensamiento. Un movimiento tan sencillo, como el inclinarse, necesita del movimiento de la cadera hacia atrás para que el centro de gravedad permanezca sobre los pies, y este cambio de posición se lleva a cabo sin reparar en él. Para verlo párese usted con sus piernas y espalda apoyadas en una pared y trate de tocar los dedos de sus pies. Las personas que cargan pesos grandes ajustan en forma automática su postura para que el centro de gravedad de la masa total caiga sobre sus pies.
Principios de Equilibrio
1.     Condiciones Generales de Equilibrio
a.    La suma algebraica de las componentes (rectangulares) de todas las fuerzas según cualquier línea es igual a cero.
b.    La suma algebraica de los momentos de todas las fuerzas respecto cualquier línea (cualquier punto para fuerzas copla nares) es igual a cero.
Si el centro de gravedad está arriba de la base o soporte, tenemos un caso más complicado. Por ejemplo, el bloque que se para sobre su extremo, si se inclina ligeramente regresará a su estado original, pero si se inclina demasiado, caerá. El punto crítico se alcanza cuando el centro de gravedad ya no cae sobre la base de soporte. En general, un cuerpo cuyo centro de gravedad está arriba de su base de soporte estará en equilibrio estable si una línea vertical que pase por su centro de gravedad pasa dentro de su base de soporte. Esto se debe a que la fuerza hacia arriba sobre el objeto, la cual equilibra a la gravedad, sólo se puede ejercer dentro del área de contacto, y entonces, si la fuerza de gravedad actúa más allá de esa área, habrá un momento neto que volteará el objeto.
LEYES DE NEWTON


PRIMERA LEY O LEY DE LA INERCIA
La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

SEGUNDA LEY O PRINCIPIO FUNDAMENTAL DE LA DENÁMICA
La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante.



TERCERA LEY O PRINCIPIO DE ACCIÓN Y REACCIÓN
Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros tambien nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.
Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actuan sobre cuerpos distintos.

Movimiento circular uniforme
En física, el movimiento circular uniforme (también denominado movimiento uniformemente circular) describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

Cinemática del MCU en mecánica clásica

Ángulo y velocidad angular

El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio.
La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud adimensional, llamada radián. Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene Descripción: 2\pi\,radianes.
La velocidad angular es la variación del desplazamiento angular por unidad de tiempo:

Partiendo de estos conceptos se estudian las condiciones del movimiento circular uniforme, en cuanto a su trayectoria y espacio recorrido, velocidad y aceleración, según el modelo físico cinemático.

Posición


Se considera un sistema de referencia en el plano x,y, con vectores unitarios en la dirección de estos ejes . La posición de la partícula en función del ángulo de giro Descripción:  \varphi y del radio r es en un sistema de referencia cartesiano x,y:

De modo que el vector de posición de la partícula en función del tiempo es:

siendo:
Descripción:  \mathbf{r} \; : es el vector de posición de la partícula.
Descripción:  r \; : es el radio de la trayectoria.
Al ser un movimiento uniforme, a iguales incrementos de tiempo le corresponden iguales desplazamientos angulares, lo que se define como velocidad angular (ω):

El ángulo (φ), debe medirse en radianes:

donde s es la longitud del arco de circunferencia
Según esta definición:
1 vuelta = 360° = 2 π radianes
½ vuelta = 180° = π radianes
¼ de vuelta = 90° = π /2 radianes

Velocidad tangencial

La velocidad se obtiene a partir del vector de posición mediante derivación tangencial:

La relación entre la velocidad angular y la velocidad tangencial es:

El vector velocidad es tangente a la trayectoria, lo que puede comprobarse fácilmente efectuando el producto escalar y comprobando que es nulo.

Aceleración

La aceleración se obtiene a partir del vector velocidad con la derivación:

de modo que

Así pues, el vector aceleración tiene dirección opuesta al vector de posición, normal a la trayectoria y apuntando siempre hacia el centro de la trayectoria circular, por lo que acostumbramos a referirnos a ella como aceleración normal o centrípeta.
El módulo de la aceleración es el cuadrado de la velocidad angular por el radio de giro, aunque lo podemos expresar también en función de la celeridad Descripción: v\,de la partícula, ya que, en virtud de la relación , resulta

Esta aceleración es la única que experimenta la partícula cuando se mueve con rapidez constante en una trayectoria circular, por lo que la partícula deberá ser atraída hacia el centro mediante una fuerza centrípeta que la aparte de una trayectoria rectilínea, como correspondería por la ley de inercia.